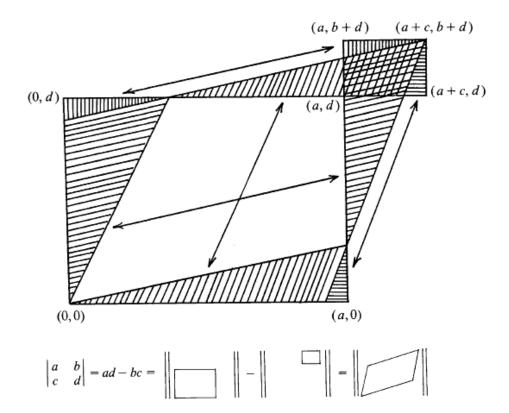
Problems - HW 4

Tuesday, September 8

- 1. Describe the geometric action of the following matrices using terms such as reflection, rotation, dilation, and skew.
 - (a) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
 - (b) $\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$
 - $\text{(d)} \quad \left(\begin{array}{ccc}
 1 & 0 & 0 \\
 0 & -1 & 0 \\
 0 & 0 & 1
 \end{array} \right)$
- 2. Let M denote the matrix

$$M = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}$$

- (a) M represents a reflection about what line? Your answer should be in terms of θ .
- (b) Use this formulation to find a reflection about the line $y = \sqrt{3}x$.
- 3. Let A be the 2×2 matrix


$$A = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right).$$

Use the figure on the reverse to explain why the area of the parallelogram spanned by the column vectors of A is ad - bc.

Acknowledgement: The figure comes from math.stackexchange. Evidently, it originally appeared in the 1985 Math Mag.

Proof without words:

A 2 \times 2 determinant is the area of a parallelogram

