Quiz 1 Review problems

1. Write down a careful definition of each of the following.

(a) The set of complex numbers

(b) The fundamental theorem of algebra

- (c) The absolute value of a complex number
- (d) The argument of a complex number
- (e) The triangle inequality
- (f) Interior point

(g) Boundary point

(h) Open set

(i) Closed set

(j) Path

(k) Limit

(l) Continuity

- 2. Show that complex multiplication is a commutative operation.
- 3. Let $a, b \in \mathbb{C}$ and f(z) = az + b. Show that $\lim_{z \to z_0} f(z) = f(z)$.
- 4. Show that \mathbb{R} is a closed subset of \mathbb{C} .
- 5. Show that $f(z) = \overline{z}$ is nowhere differentiable.
- 6. Show that |z| = 1 iff $z = \overline{z}$.
- 7. Express $(\sqrt{3}+i)^{100}$ in the form a+bi.
- 8. Describe the following sets and classify them as open, closed, or neither.
 - (a) $\{z: 1 < |z+1-2i| \le 2\}$
 - (b) $\{z : \text{Re}(z) > 0\}$
 - (c) $e^{\pi i/4} \{ z : \text{Re}(z) > 0 \}$
 - (d) $\{z: |z (1+i)| = |z + (1+i)|\}$