Numerical Analysis - Review for exam I

The first exam will be this Friday, February 19. Here are some problems that might help.

- 1. Write down a careful statement of the following theorems.
 - (a) The intermediate value theorem
 - (b) The integral test with remainder
 - (c) Taylor's theorem with remainder
- 2. A single precision (32-bit number) is with bit string sem is given by

$$(-1)^s \times 2^{e-127} \times (1.m)_2.$$

Express the single precision machine numbers with the following bit strings in decimal form.

- 3. Express the number 42 in hexadecimal form.
- 4. Let $f(x) = e^x x 1$. In this problem, we'll consider two approaches to computing f(0.01). Note that to five decimal digits, $e^{0.01} \approx 1.0101$.
 - (a) Use the above approximation to compute f(0.01).
 - (b) Use the Taylor series of f to compute f(0.01).
- 5. Let's consider the solution of the equation $\cos(x) = x^3$ using bisection. We'll rewrite it in terms of the function $f(x) = x^3 \cos(x)$. Of course, a root of f is a solution of the original equation.
 - (a) Use the intermediate value theorem to clearly explain why f has a root between x=0 and x=2.
 - (b) Suppose we use the bisection method starting from the interval [a, b] = [0, 2]. Provide an upper bound on the number of iterations required to estimate the solution to within machine precision.
- 6. The function $f(x) = (x^2 + 2)/3$ has two fixed points: x = 1 and x = 2. Classify both points as attractive, repulsive, or neutral under iteration of f.
- 7. Suppose we wish to find a decent, rational approximation to $\sqrt[3]{3}$ using Newton's method. Noting that $\sqrt[3]{3}$ is a root of $f(x) = x^3 3$, write down the Newton's method iteration function N and perform two iterations from $x_1 = 1$.
- 8. Consider the data (-1,0), (1,1), (2,2).
 - (a) Write down the unique quadratic that interpolates this data in Lagrange form.
 - (b) Write down the unique quadratic that interpolates this data in factored Newton form.
 - (c) Write down a system of linear equations that the natural cubic spline that fits this data must satisfy.