Calc II - Problems off of past exams

The final exam is coming up. Here are some problems off of past exams to remember.

Exam 1 - #2: Evaluate the following integrals using the technique indicated.

(a)
$$\int xe^x dx$$
 - by parts

(b)
$$\int_{-1}^{1} x \sin(\cos(x^2)) dx$$
 - with *u*-subs

Exam 1 - #4 Suppose we wish to estimate

$$\int_0^1 \sin(x) dx$$

with an approximating sum and we'd like our result to be within 0.001 of the actual value using a midpoint sum.

- (a) Find an n large enough so that n terms will guarantee your estimate is within the desired accuracy.
- (b) Write down the resulting sum using summation notation.
- (c) Is your sum an upper bound or a lower bound?

Exam 1 - #5 Evaluate the following integrals using any technique that you see fit.

(a)
$$\int_0^3 \sqrt{9-x^2} \, dx$$

(b)
$$\int x\sqrt{9-x^2}\,dx$$

(c)
$$\int_0^{2\pi} \sin^4(x) dx$$

(d)
$$\int \sin^3(x) dx$$

Exam 2 - #2 Let $f(x) = \cos(3x)$. Suppose we spin the region between the graph of f over the interval $[0, \pi/6]$ about the x-axis. Find the volume of the resulting solid of revolution.

Exam 2 - #3 Let $f(x) = \cos(3x)$. Suppose we spin the region between the graph of f over the interval $[0, \pi/6]$ about the y-axis. Find the volume of the resulting solid of revolution.

Exam 2 - #4 Suppose I need to exert a force of 5 N to stretch a spring 0.5 meters past its natural length. How much work does it take to get it there from its natural postion?

Exam 2 - #6 Use *u*-substitution to translate the following normal integral into a standard normal integral:

$$\frac{1}{\sqrt{2\pi}\,5} \int_0^4 e^{-(x-1)^2/50} dx.$$

Exam 3 - #1 Use the geometric series formula to express

$$\sum_{n=3}^{\infty} (-1)^{n+1} \frac{2^n}{3^{n-1}}$$

as a simple, finite combination of fractions.

 $\mathbf{Exam}\ \mathbf{3}$ - $\#\mathbf{3}$ Use the integral test to show that

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

diverges.

Note: You do need to evaluate an integral for this problem.

Exam 3 - #5 Write down a couple of complete sentences using the comparison test to show that

$$\sum_{n=1}^{\infty} \frac{\cos^2\left(n\right)}{n^3 + 1}$$

converges.

Exam 3 - #7 Classify the following series as absolutely convergent, conditionally convergent, or divergent.

- (a) $\sum (-1)^n \frac{\cos(n)}{2}$
- (b) $\sum (-1)^n \frac{n}{n^2 + 1}$
- (c) $\sum (-1)^n \frac{\cos(n)}{n^3 + 1}$ (d) $\sum \frac{n^3}{3^n}$